【摘 要】
:
针对飞行自组网(FA N E Ts)中因节点高速移动导致链路频繁断开的问题,提出一种具备链路生存时间预测与路由自主修复能力的高动态FA N E Ts组播路由协议.根据相邻节点间距离的变化情况预测邻居节点间剩余链路生存时间,同时基于预测结果并结合路由跳数、剩余能量等因素对链路质量作出综合评价,选出最佳中继节点以提高路由的可靠性.此外,通过局部路由修复与全局路由刷新相结合的策略对所建立路由进行动态维护,缓解节点高速移动引起的链路频繁断开问题,提高数据递交率.实验结果表明,在不同场景下,该协议在数据递交率、网络
【机 构】
:
南京航空航天大学 电子信息工程学院,南京 211106;中国人民解放军96091部队,北京 100089;北京航天自动控制研究所,北京 100854
论文部分内容阅读
针对飞行自组网(FA N E Ts)中因节点高速移动导致链路频繁断开的问题,提出一种具备链路生存时间预测与路由自主修复能力的高动态FA N E Ts组播路由协议.根据相邻节点间距离的变化情况预测邻居节点间剩余链路生存时间,同时基于预测结果并结合路由跳数、剩余能量等因素对链路质量作出综合评价,选出最佳中继节点以提高路由的可靠性.此外,通过局部路由修复与全局路由刷新相结合的策略对所建立路由进行动态维护,缓解节点高速移动引起的链路频繁断开问题,提高数据递交率.实验结果表明,在不同场景下,该协议在数据递交率、网络吞吐量、路由开销等方面均优于经典组播路由协议ODMRP.
其他文献
为消除脉冲超宽带(IR-UWB)雷达系统采集的人体呼吸回波信息中的干扰信号,并准确估计出人体呼吸频率和到达时间(TOA)范围,提出一种基于IR-UWB雷达的非接触式呼吸检测方法.对IR-UWB雷达回波信号进行线性趋势消除与滤波得到平滑的回波信号,在每个慢时间域上对回波信号使用傅里叶变换估计出人体呼吸频率,并设计基于回波信号均方根和超值峰度的EK-RMS算法确定TOA范围,同时将人体呼吸频率与TOA范围进行信息比对,最终得到受试目标的呼吸频率.实验结果表明,与Phase-Based、FFT和WT-Windo
现有的深度学习方法在处理点云分割任务时,难以有效地学习点云的局部特征,存在分类分割精度低和鲁棒性差的问题。构建深度神经网络RMFP-DNN用于多特征点云分类分割。分别利用自注意力模块和多层感知机提取点云的局部特征和全局特征,并将两者相互融合,提高分类分割的准确率和鲁棒性。实验结果表明,RMFP-DNN平均分类准确率和整体分类准确率分别为88.9%和92.6%,与PointNet、PointNet+
针对移动边缘计算中无线城域网环境下的边缘服务器放置(WESP)问题,建立时延和能耗模型并将WESP问题转化为带约束条件的单目标优化问题,进而提出一种基于混沌麻雀搜索算法的边缘服务器放置方法.使用精英反向学习策略初始化种群,增加初始种群的多样性,加快算法搜索速度.通过设计新的个体编码方式准确描述WESP问题,优化算法更新过程.采用逻辑混沌映射策略改进麻雀个体,保证迭代后期的种群多样性,加快算法收敛速度.仿真结果表明,与主流放置方法相比,该方法在时延和能耗优化方面表现突出,并且系统开销下降了18.1%.
间隙(gap)填充方法有助于获取更加完整和准确的基因组序列,可以促进基因表达与调控、结构变异分析和物种进化的研究.虽然已有较多填充gap的方法被提出,但是填充的准确性和完整性仍有待提高.设计一种基于长读数和多序列比对的gap填充方法GapLM.将包含gap的序列集合切割成不含gap的序列集合,基于长读数和序列之间比对位置的差异对结果进行修正.通过分析比对确定覆盖每个gap区域的左侧、右侧和跨过3个序列集合.针对1个gap和其相关联的3个序列集合,采用多序列比对方法分别对3个集合中的序列进行处理和融合,并生
为解决目前单目图像深度估计方法存在的精度低、网络结构复杂等问题,提出一种密集卷积网络结构,该网络采用端到端的编码器和解码器结构。编码器引入密集卷积网络DenseNet,将前面每一层的输出作为本层的输入,在加强特征重用和前向传播的同时减少参数量和网络计算量,从而避免梯度消失问题发生。解码器结构采用带有空洞卷积的上投影模块和双线性插值模块,以更好地表达由编码器所提取的图像特征,最终得到与输入图像相对应
不平衡分类问题广泛存在于医疗、经济等领域,对于不平衡数据集分类,特别是高维数据分类时,有效的特征选择算法至关重要.然而多数特征选择算法未考虑特征协同的影响,导致分类性能下降.对FA S T特征选择算法进行改进,并考虑特征的协同作用,提出一种新的特征选择算法FSBS.运用AUC对特征进行评估,以相互增益衡量协同作用大小,选出有效特征,进而对不平衡数据进行分类.实验结果表明,该算法能有效地选择特征,尤其在特征数量较少的情况下可保持较高的分类准确率.
相较于传统的地面认知网络,星地认知网络链路传输时延较长,因此基于实时信道感知的认知用户中断概率较高.以离散时间马尔科夫链描述授权用户的动态及衰落信道,同时考虑信道转移概率的不确定性,建立基于似然不确定性模型的信道状态马尔科夫链,利用鲁棒的向后递归方法得到离线存储的功率分配矩阵,并对网络中多个用户采用博弈论的方法,进而提出基于中断概率的功率控制算法.仿真结果表明,与RRAP和TS-RS-PA算法相比,该算法在网络延迟存在的情况下能够更有效地降低中断概率并节约能耗.
实体链接是加强语义理解和连接知识信息与文本的有效方法,但目前多数模型对上下文语境的精准理解受限于文本长度,面向短文本的实体链接任务存在实体边界识别错误和实体语义理解错误的问题.针对中文短文本的实体链接任务,构建基于局部注意力机制的实体链接模型.在实体消歧的过程中,通过对待消歧文本与实体的知识描述文本进行拼接,将短文本转换为长文本,同时引入局部注意力机制,缓解长距离依赖问题并强化局部的上下文信息.实验结果表明,相比于传统加入BIO标注方法的模型,该模型在CCKS2019和CCKS2020数据集上的F1值分别
智能舰船识别可有效提高舰船装备智能化水平,但存在安全识别问题,即使性能卓越的分类模型也会受到对抗样本的攻击。面对快速梯度下降法(FGSM)这类对抗攻击,传统的防御方法需要先推倒已经训练好的分类模型,再通过安全手段进行重新训练。为简化这一过程,提出防御FGSM对抗攻击的FGSM-Defense算法。获得分类器对对抗样本初次预测的类别排名后,按相应置信度大小排名取出指定数量的类别。在此基础上,通过暴力
在太赫兹无线个域网中,通常会配备定向天线以延长网络设备数据传输距离,但在使用定向天线时存在节点发现困难、动态场景下节点位置难以预知等问题.针对太赫兹网络场景,基于IEEE802.15.3c高速网络MAC协议标准以及现有太赫兹定向MAC协议,提出一种节点移动感知的定向MAC(NMA-MAC)协议.通过微微网节点位置预知算法计算节点可能移动的位置,并将位置信息通过控制帧携带给其他节点,使节点之间能够更快传递彼此的位置信息.仿真结果表明,相比IEEE802.15.3c标准协议,NMA-MAC协议的吞吐量和传输成