论文部分内容阅读
基于图像的树木自动提取是其种类、长势、形态等信息智能化判别的基础,如何实现树木的自动、准确、快速提取是具有实用性的科学问题。在自然场景中,由于图像元素多样、颜色差异大,树木自身存在不规则性,树木提取难度非常大。针对现有的图像分割与图像抠图法在树木提取过程中分别存在的误分割与过程复杂所导致的计算量大的问题,提出了一种基于K-means聚类算法优化Close-Form图像抠图的树木提取方法。在少量的标记下,依据颜色线性假设进行最小化代价函数计算,得到图像透明度;对透明度图像依次进行中值滤波、高斯滤波,得