探究解三角形中的范围或最值问题

来源 :中学课程辅导·高考版 | 被引量 : 0次 | 上传用户:qqboygogogogo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  
  解三角形问题是高考数学的热点问题,而其中的范围问题是考试的难点.实际上任何范围问题,其本质都是函数问题,三角形的范围(或最值)问题也不例外.三角形中的范围(或最值)问题的解法主要有两种:一种是用函数求解;另一种是利用基本不等式求解.縱观近几年高考,三角形中的范围问题大致分成三类:边的范围问题、角的范围问题、面积的范围问题.下面就这类常考问题加以归类解析,切实帮助同学们进一步理解、解决解三角形中的范围问题,提升同学们的解题能力.
其他文献
在经历系统梳理数学知识、形成基本的知识体系和基本的数学技能的第一轮复习后,各校需要进行第二轮复习,对数学中的重点、难点、热点问题进行专题性的思考和总结,进一步提高同学们分析问题和解决问题的能力,优化解题策略,提高思维品质;而第二轮复习的目的是通过分门别类地对数学中的热点问题进行专题性的思考和总结,进一步提高同学们分析问题和解决问题的能力,优化解题方法,提高思维品质.并使同学们进一步感悟常用的数学思
一、填空题:本大题共14小题,每小题5分,共70分
新《信息技术课程标准》提出, 中小学信息技术课程要“使学生具有获取信息、传输信息、处理信息和应用信息的能力”。计算机的人机交流的基础技能——文字输入自然是信息技术能力的基础,是信息技术操作必须具备的基本能力。而文字输入就回避不了输入法的教学。  一、目前教材中输入法的处理方法  现行小学苏教版教材对文字输入安排了课程“键盘输入”,但只是着眼于打字姿势、指法和熟悉键盘的训练,对输入法仅提及全拼输入法
不等式與函数的关系非常密切,当处理不等式问题用常规方法不易解决时,不妨试试从函数的角度进行分析,可能比较容易求解.为此,本文结合实例介绍函数观点在解不等式、证明不等式、比较实数大小及确定参数取值范围等方面的应用.  一、解不等式  点评:涉及到不等式“恒成立”、“能成立(或有解)求参数的取值范围”等问题时,一般都是从函数的观点出发,数形结合,直观求解;或者通过“分离参数法”,最终转化成研究函数的单
摘 要:思想政治理论课是落实立德树人根本任务的关键课程,办好思想政治理论课关键在教师。为肩负起这一神圣使命,高中思政课教师需要不断提升自已的綜合修养,在坚定政治信念、深化理论认知、完善教学方式等方面积极进行自我修炼,不断增强个性魅力,对学生产生正面的示范、激励和陶冶作用,从而推进立德树人这一根本任务的实现。  关键词:思想政治理论课;立德树人;修养  2019年3月18日,习近平总书记在京主持召
近几年高考命题中,对向量的考查主要以向量的基本概念、定理、运算等为命题视角,本文就2020高考题中的平面向量题目进行归类分析.  一、准确理解相关概念、定理的本质  考点1:向量的模长的计算  例1 (2020全国Ⅰ卷第14题)设a,b为单位向量,且|a b|=1,则|a-b|= .  分析:向量求模长问题常常根据|a|=a2,问题得解.  解析:因为a,b为单位向量,所以|a|=|b|=1
2018年9月28日,有群众向《法制日报》记者反映称,山东省菏泽市开发区丹阳路小学向小学生们发放的红领巾上,竟然印有“菏泽万达广场”以及“11月16日盛大开业”的广告字样。除此之外,发放的学生帽上也印有该广告。对此,记者采访了菏泽市开发区教育局,相关负责人表示这是交通安全进校园活动发放的,学校发现后很快全部收回。  菏泽市开发区教育局一位高姓负责人说,25号下午的活动共向丹阳路小学三年级发放了一百
Module 1  一、重點单词
摘 要:高中思想政治新课标凸显了“课程政治方向的引领”要求。这就要求广大教师坚守育人导向,以立德树人、培育社会主义核心价值观为己任,努力做到在辨析判断、实践养成中实现价值引领。但在长期的教学中,功利、被动、肤浅、孤立、机械等教学弊端使得不少教师忽视了引領功能。要突破这种弊端,就必须努力做到在民主氛围中引导价值选择、在思辨课堂里寻求价值澄清、在典型示范下树立价值标杆、在践行道路上实现价值自信。  关
三次函数是导数内容中最简单的高次函数,其导函数是二次函数,这类问题的难点是研究其中的参数的取值范围.破解难点的方法是对三次函数求导后,化归成二次函数,通过二次方程根的分布求解,解三次函数的问题,可借助导数工具进行研究,推進了二次函数性质的深化与二次函数方法的研究.