论文部分内容阅读
This paper computes the Thom map on γ2 and proves that it is represented by 2b2,0h1,2 in the ASS. The authors also compute the higher May differential of b2,0, from which it is proved that (~γ)s(b0hn - h1bn-1) for 2 ≤ s < p - 1 are permanent cycles in the ASS.