【摘 要】
:
以聚乙烯吡咯烷酮为原料,采用水热法合成了一种环保、高效的氮掺杂碳点(N-CDs)。利用傅里叶变换红外光谱(FTIR)对其结构进行了表征,采用电化学方法、失重法和扫描电子显微镜(SEM)研究了N-CDs在1 mol/L HCl溶液中对Q235钢的缓蚀性能和缓蚀机理。结果表明,当N-CDs的用量为200 mg/L时,缓蚀率可高达95.6%。电化学试验表明,N-CDs是一种混合型缓蚀剂,但主要是抑制阳极的反应。其缓蚀机理是:N-CDs在Q235钢表面以物理吸附和化学吸附的共同作用在Q235钢表面形成稳定的吸附膜
【基金项目】
:
陕西省重点研发计划资助项目(2020GY-306),国家自然科学基金资助项目(21807086)。
论文部分内容阅读
以聚乙烯吡咯烷酮为原料,采用水热法合成了一种环保、高效的氮掺杂碳点(N-CDs)。利用傅里叶变换红外光谱(FTIR)对其结构进行了表征,采用电化学方法、失重法和扫描电子显微镜(SEM)研究了N-CDs在1 mol/L HCl溶液中对Q235钢的缓蚀性能和缓蚀机理。结果表明,当N-CDs的用量为200 mg/L时,缓蚀率可高达95.6%。电化学试验表明,N-CDs是一种混合型缓蚀剂,但主要是抑制阳极的反应。其缓蚀机理是:N-CDs在Q235钢表面以物理吸附和化学吸附的共同作用在Q235钢表面形成稳定的吸附膜
其他文献
双酚A(BPA)广泛用于环氧树脂、聚碳酸酯塑料、阻燃剂、化妆品乃至婴幼儿用品等的生产,但其作为一种内分泌干扰物会导致人体新陈代谢和生殖机能紊乱,严重时还会引发各种癌症。在各类BPA检测技术中,电化学方法因操作简便、响应时间快、灵敏度高、成本低和仪器便携等优势而受到了人们的重视。评述了近5年来用于BPA检测的电化学传感器电极修饰复合材料的研究进展及其在实际样品分析中的应用,并重点关注电极修饰复合材料的制备及其电化学传感器的检测性能,为其今后的发展和实际应用提供参考和新思路。
通过化学交联结合物理交联的方法制备了一种pH敏感型的黄原胶/聚乙烯醇(XG/PVA)复合水凝胶,研究了XG与PVA不同质量比、不同交联剂用量及不同冷冻-解冻循环次数对XG/PVA水凝胶溶胀性能和力学性能的影响。结果表明,XG与PVA质量比为1∶5,交联剂环氧氯丙烷用量为5%,冷冻-解冻循环3次时,XG/PVA复合水凝胶内部结构均匀紧密且具有较高的溶胀性能,此时凝胶的弹性模量和压缩强度达到(26.30±0.03)kPa和(134.36±0.43)kPa。并探讨了该实验条件制备的XG/PVA水凝胶的pH敏感性
首先通过溶剂热法制备了磁性Fe3O4纳米粒子,随后采用SiO2对其进行包覆形成了Fe3O4@SiO2核壳磁性纳米材料。通过XRD、SEM、TEM、磁性能分析和吸附性能分析等对Fe3O4@SiO2核壳磁性纳米材料进行了表征。结果表明,合成的Fe3O4@SiO2
采用1,2,3,4-环丁烷四酸二酐(CBDA)分别与芳香族二胺单体,包括4,4′-二氨基二苯甲烷(MDA)、3,3′-二甲基-4,4′-二氨基二苯甲烷(DMDA)、3,3′,5,5′-四甲基-4,4′-二氨基二苯甲烷(TMMDA)、3,3′-二甲基-5,5′-二乙基-4,4′-二氨基二苯甲烷(DMDEDA)、1,1-双(4-氨基-3,5-二甲基苯基)-1-苯基甲烷(PTMDA)以及1,1-双(4-氨基-3,5-二甲基苯基)-1-(3′-三氟甲基苯基)甲烷(TFMDA)通过低温溶液缩聚法制备了聚酰胺酸(PA
聚苯胺(PANI)在连续充放电后出现结构塌陷,导致其循环稳定性变差的问题。采用原位聚合技术,使苯胺在生物质碳(MnOC)材料表面发生原位聚合,控制PANI颗粒在MnOC表面有序生长,制备的PANI/MnOC复合电极材料同时具备MnOC双电层电容和PANI法拉第赝电容的特征。对材料的分析测试结果表明,PANI/MnOC复合电极材料由微孔、介孔及大孔的多孔网络构成,有利于电荷的存储及传输。由电化学性能测试结果可知,PANI/MnOC复合电极材料相比于PANI,电流密度为1.0 A/g时比电容为385.0 F/
针对目前导电硅橡胶因压缩永久变形差造成的电磁泄漏问题,以不同乙烯基含量的双端乙烯基硅油为基胶,不同含氢量的端甲基侧氢硅油为交联剂,在铂金催化剂和抑制剂的作用下发生加成反应制备了一系列有机硅弹性体(SE),根据SE的压缩永久变形大小和加工性能好坏选择乙烯基硅油Vi3和含氢硅油H2在两者摩尔比例为0.8:1的基础上添加66质量份的导电粉镍包石墨片和不同质量份的氢氧化铈制备导电复合材料SE/Ni(G)/Ce(OH)4。重点探究氢氧化铈对SE/Ni
通过马来酸酐改性废弃百香果皮制备一种羧酸功能化百香果皮生物吸附剂,并探索了其对水溶液中阳离子染料的选择性去除。利用SEM、BET、FTIR、和XRD对制备的马来酸酐改性百香果皮生物吸附剂(PFPCM)进行系统表征,并通过间歇吸附实验研究其对亚甲基蓝(MB)和甲基紫(MV)的吸附性能和机理。结果表明,PFPCM不仅具有较高的吸附速率、优异的吸附性能,而且对阳离子染料(如MB和MV)具有良好的吸附选择性。PFPCM对MB和MV的吸附过程遵循准二阶动力学和Langmuir等温吸附模型,最大吸附量分别为529.1
依次采用浸渍法与原位聚合法在玄武岩纤维表面均匀负载铁酸钴(CoFe2O4)纳米粒子,后经充磁处理后制备成磁性玄武岩功能滤料。在此基础上,分别采用SEM、VSM、FTIR、XRD等表征方法分析了磁性玄武岩滤料中CoFe2O4纳米颗粒的分布形态、剩磁及矫顽力大小、纤维表面官能团的作用机制及CoFe2O4负载结晶度。接着将原位聚合法制得的磁性玄武岩滤料在高温中处理24 h,并依次对
采用热剥离法和甲苯二异氰酸酯(TDI)改性制备了功能化氧化石墨烯(iGO),并以iGO作为填料制备了热塑性聚氨酯/石墨烯(TPU/iGO)纳米复合材料。采用扫描电镜(SEM)对GO和iGO进行了微观形貌研究;采用XRD衍射仪、拉曼光谱仪和傅里叶红外光谱仪等对复合材料的结构进行了研究;采用精密介电频潜仪测定了复合材料的介电常数和介质损耗因数。结果表明,TDI对iGO材料的插层改性,增大了石墨烯的层间距;TPU-2.0%iGO纳米复合材料的拉曼光谱与纯iGO材料更加相似,而其红外光谱与纯TPU材料更加相似;i
以含二甲基杂萘联苯聚芳醚酮为原料,通过控制溴化条件,得到了含溴甲基杂萘联苯聚芳醚酮,与吡啶反应得到可溶解的含吡啶基杂萘联苯聚芳醚酮(Py-PPEK),通过溶液浇铸法制得了含吡啶基阴离子交换膜。考察了离子交换容量(IEC)对Py-PPEK膜基本性能及电池性能的影响。研究结果表明,随着IEC的增加,Py-PPEK膜的吸水率和溶胀率增加,钒离子渗透系数和面电阻减小,钒电池的电流效率、电压效率和能量效率提高。在电流密度为40 mA/cm2时,Py-PPEK30(IEC=0.41 mmol/g