论文部分内容阅读
Superpixel as an important pre-processing technique has been successfully used in many vision applications. In this paper, we proposed a region merging method to improve superpixel segmentation accuracy with low computational cost. We first segmented the image into many accurate small regions, and then progressively agglomerated them until the desired region number was reached. The region merging weight was derived from a novel energy function, which encourages the superpixel with color consistency and similar size. Experimental results on the Berkeley BSDS500 data set showed that our region merging method can significantly improve the accuracy of superpixel segmentation. Moreover, the region merging method only need 50ms to process a 481x321 image on a single Intel i3 CPU at 2.5 GHz.