基于Graph Cuts多特征选择的双目图像分割方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:djsfhkjthrekl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
双目图像分割对后续立体目标合成与三维重建等应用至关重要。由于双目图像中包含场景深度信息,因此直接将单目图像分割方法应用于双目图像尚不能得到理想的分割结果。目前,大多数双目图像分割方法将双目图像的深度特征作为颜色特征的额外通道来使用,仅对颜色特征与深度特征做简单整合,未能充分利用图像的深度特征。文中基于多分类Graph Cuts框架,提出了一种交互式双目图像分割方法。该方法将颜色、深度和纹理等特征融合到一个图模型中,以更充分地利用不同特征信息。同时,在Graph Cuts框架中引入了特征空间邻域系统,
其他文献
推荐系统能够有效解决信息过载等问题,得到了国内外众多学者的广泛关注。真实世界中的应用场景往往可以建模成异质信息网络,因此基于异质信息网络表示学习的推荐算法成为了近年来的研究热点。然而,当前的研究工作仍然存在异质信息提取缺乏深度、节点的复杂关系发掘不充分等问题。为解决这些问题,文中提出了基于异质信息网络表示学习与注意力神经网络的推荐算法。首先,提出了保持语义关系与结构拓扑的异质信息网络表示方法;然后,设计了基于元路径的随机游走策略来获取异质信息网络中的节点序列,对序列过滤并生成用户和项目在不同元路径下的表示