论文部分内容阅读
针对非结构网格隐式算法在GPU上的加速效果不佳的问题,通过分析GPU的架构及并行模式,研究并实现了基于非结构网格格点格式的隐式LU-SGS算法的GPU并行加速.通过采用RCM和Metis网格重排序(重组)方法,优化非结构网格的数据局部性,改善非结构网格的隐式算法在GPU上的并行加速效果.通过三维机翼算例验证了本文实现的正确性及效率.结果表明两种网格重排序(重组)方法分别得到了63%和69%的加速效果提高.优化后的LU-SGS隐式GPU并行算法获得了相较于CPU串行算法27倍的加速比,充分说明了本文方法的高