论文部分内容阅读
为了提高合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别性能,提出了结合二维内蕴模函数(Bidimensional Intrinsic Mode Function,BIMF)与贝叶斯多任务学习的SAR目标识别方法。采用二维经验模态分解获得SAR图像的多层次BIMF,从而更好地描述原始图像的细节信息。为了获得稳健的决策,采用贝叶斯多任务学习对原始SAR图像及其多层次的BIMF进行联合稀疏表示。最后,通过比较各个类别对于测试样本的重构误差判定目标类别。基于MSTAR数据集在多种