论文部分内容阅读
以QuickBird高分辨率遥感影像为主要数据源,采用多尺度影像分割方法提取地物对象的光谱、纹理和形状特征;在此基础上,构建基于随机森林(RF)方法的遥感影像分类模型,分析和评价特征变量对模型重要性与稳定性的影响。结果表明:1研究区最优分割尺度参数为70、形状因子0.2、色彩因子0.8,同时构建研究区乔木、灌木和草地等8个景观类型的光谱、纹理和形状等32个特征变量信息;2选择5 000棵树和1个节点变量构建的RF分类模型的总体精度为0.94,Kappa系数为0.93,OOB(Out of Bag)数据泛化