论文部分内容阅读
[摘 要]温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位。而且随着科学技术和生产的不断发展,温度传感器的种类还是在不断增加丰富来满足生产生活中的需要。
[关键词]智能 温度 控制系统
中图分类号:TV544 文献标识码:A 文章编号:1009-914X(2017)04-0128-01
一、引言
智能温度控制系统的总体设计是围绕低成本,模块化,可扩展以及寿命长的特点展开的,在硬件选择方面,选择性价比高的STCl2C5410AD单片机,LM358型放大器,LED显示器,采用低压差线性电压稳压器,较高内阻的壓力传感器;在软件方面,采用了功能模块化,为以后的升级或者扩展做准备,同时采用间歇式的工作模式,非采样期间只有显示器,穩压器等处于活动状态;在保证性能要求的情况下缩短A/D转换的时间等一系列措施,有效的提高了器件寿命.为了降低整个系统的成本,在满足性能要求的前提下,选择低成本元器件,简化系统设计;采用多点校准技术和线性插值方法,降低了对传感器的线性的要求,扩大了可选传感器的范围,提高了产品的通用性和可扩展性,提高了产品的竞争力。
二、国内外发展现状
1、国外发展现状。国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。990年代中期,智能温控仪问世,它是微电子技术、计算机技术和自动测试技术的结晶。目前,国际上已开发出多种智能温控器系列产品。智能温控器内部都包含温度传感器、A/D转换器、信号处理器和接口电路。有的产品还有多路选择器、中央控制器(CPU)、随机存储器(RAM)和只读存储器(ROM)。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。
2、国内发展现状。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。
总的来说,温控器被广泛应用于工农业生产、科学研究和生活等领域,数量日渐上升。近百年来,温控器的发展大致经历了三个阶段:1.模拟温度控制器;2.集成温度控制器;3.能温度控制器,目前,国际上新型温控器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。
三、智能温度控制法的研究
1971年,著名的美籍华裔科学家傅京孙教授最早公开指出了一个崭新的研究领域,并提出了相应的概念,这就是智能控制系统(Intelligent Control Systems)。
1985年8月,IEEE在美国纽约召开了第一界智能控制学术讨论会,智能控制原理和智能控制系统结构这一提法成为这次会议的主要议题。这次会议决定,在IEEE控制系统学会下设立一个IEEE智能控制专业委员会。这标志着智能控制这一新兴学科研究领域的正式诞生。智能控制作为一门独立的学科,已正式在国际上建立起来。在过去的20多年里,智能控制理论发展迅猛,出现了大量新颖的控制理论。
温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等;恒值温度控制的目的是使被控对象的温度恒定在某一给定数值上,且要求其波动幅度(即稳态误差)不能超过某允许值。
智能控制系统是某些具有仿人智能的工程控制和信息处理系统,它与人工智能的发展紧密联系。智能控制是一门新兴的交叉前沿学科,它具有非常广泛的应用领域。智能可定义为:能有效的获取、传递、处理、再生和利用信息,从而在任意给定的环境下成功的达到目的的能力。人工智能是应用除了数学式子以外的方法把人们的思维过程模型化,并利用计算机来模仿人的智能的学科。它的应用范围远比控制理论广泛,如包括判断、理解、推理、预测、识别、规划、决策、学习和问题求解等,是高度脑力行为和体力行为的综合。智能控制就是应用人工智能的理论与技术和运筹学的优化方法,并将其同控制理论方法与技术相结将智能控制与PID控制相结合,实现温度的智能控制。智能控温法采用神经元网络和模糊数学为理论基础,并适当加以专家系统来实现智能化。其中应用较多的有模糊控制、神经网络控制以及专家系统等。尤其是模糊控温法在实际工程技术中得到了极为广泛的应用。目前已出现一种高精度模糊控制器,可以更好的模拟人的操作经验来改善控制性能,从理论上讲,可以完全消除稳态误差。所谓第三代智能温控仪表,就是指基于智能控温技术而研制的具有自适应PID算法的温度控制仪表。
目前国内温控仪表的发展,相对国外而言在性能方面还存在一定的差距,它们之间最大的差别.主要还是在控制算法方面,具体表现为国内温控仪在全量程范围内温度控制精度低,自适应性较差。这种不足的原因是多方面造成的,如针对不同的温控对象,由于控制算法的不足而导致控制精度不稳定等。
四、结语
近年来,温度的控制在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。
参考文献
[1] 王永骥,王金城,王敏.自动控制原理[M].二版.北京:化学工业出版社,2010.
[2] 易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,2010.
[3] 杨立波.智能温度控制系统研究[J].科技博览,2012年.
[4] 薛定宇.控制系统仿真与计算机辅助设计[M].北京:机械工业出版社,2013.
[关键词]智能 温度 控制系统
中图分类号:TV544 文献标识码:A 文章编号:1009-914X(2017)04-0128-01
一、引言
智能温度控制系统的总体设计是围绕低成本,模块化,可扩展以及寿命长的特点展开的,在硬件选择方面,选择性价比高的STCl2C5410AD单片机,LM358型放大器,LED显示器,采用低压差线性电压稳压器,较高内阻的壓力传感器;在软件方面,采用了功能模块化,为以后的升级或者扩展做准备,同时采用间歇式的工作模式,非采样期间只有显示器,穩压器等处于活动状态;在保证性能要求的情况下缩短A/D转换的时间等一系列措施,有效的提高了器件寿命.为了降低整个系统的成本,在满足性能要求的前提下,选择低成本元器件,简化系统设计;采用多点校准技术和线性插值方法,降低了对传感器的线性的要求,扩大了可选传感器的范围,提高了产品的通用性和可扩展性,提高了产品的竞争力。
二、国内外发展现状
1、国外发展现状。国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。990年代中期,智能温控仪问世,它是微电子技术、计算机技术和自动测试技术的结晶。目前,国际上已开发出多种智能温控器系列产品。智能温控器内部都包含温度传感器、A/D转换器、信号处理器和接口电路。有的产品还有多路选择器、中央控制器(CPU)、随机存储器(RAM)和只读存储器(ROM)。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。
2、国内发展现状。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。
总的来说,温控器被广泛应用于工农业生产、科学研究和生活等领域,数量日渐上升。近百年来,温控器的发展大致经历了三个阶段:1.模拟温度控制器;2.集成温度控制器;3.能温度控制器,目前,国际上新型温控器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。
三、智能温度控制法的研究
1971年,著名的美籍华裔科学家傅京孙教授最早公开指出了一个崭新的研究领域,并提出了相应的概念,这就是智能控制系统(Intelligent Control Systems)。
1985年8月,IEEE在美国纽约召开了第一界智能控制学术讨论会,智能控制原理和智能控制系统结构这一提法成为这次会议的主要议题。这次会议决定,在IEEE控制系统学会下设立一个IEEE智能控制专业委员会。这标志着智能控制这一新兴学科研究领域的正式诞生。智能控制作为一门独立的学科,已正式在国际上建立起来。在过去的20多年里,智能控制理论发展迅猛,出现了大量新颖的控制理论。
温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等;恒值温度控制的目的是使被控对象的温度恒定在某一给定数值上,且要求其波动幅度(即稳态误差)不能超过某允许值。
智能控制系统是某些具有仿人智能的工程控制和信息处理系统,它与人工智能的发展紧密联系。智能控制是一门新兴的交叉前沿学科,它具有非常广泛的应用领域。智能可定义为:能有效的获取、传递、处理、再生和利用信息,从而在任意给定的环境下成功的达到目的的能力。人工智能是应用除了数学式子以外的方法把人们的思维过程模型化,并利用计算机来模仿人的智能的学科。它的应用范围远比控制理论广泛,如包括判断、理解、推理、预测、识别、规划、决策、学习和问题求解等,是高度脑力行为和体力行为的综合。智能控制就是应用人工智能的理论与技术和运筹学的优化方法,并将其同控制理论方法与技术相结将智能控制与PID控制相结合,实现温度的智能控制。智能控温法采用神经元网络和模糊数学为理论基础,并适当加以专家系统来实现智能化。其中应用较多的有模糊控制、神经网络控制以及专家系统等。尤其是模糊控温法在实际工程技术中得到了极为广泛的应用。目前已出现一种高精度模糊控制器,可以更好的模拟人的操作经验来改善控制性能,从理论上讲,可以完全消除稳态误差。所谓第三代智能温控仪表,就是指基于智能控温技术而研制的具有自适应PID算法的温度控制仪表。
目前国内温控仪表的发展,相对国外而言在性能方面还存在一定的差距,它们之间最大的差别.主要还是在控制算法方面,具体表现为国内温控仪在全量程范围内温度控制精度低,自适应性较差。这种不足的原因是多方面造成的,如针对不同的温控对象,由于控制算法的不足而导致控制精度不稳定等。
四、结语
近年来,温度的控制在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。
参考文献
[1] 王永骥,王金城,王敏.自动控制原理[M].二版.北京:化学工业出版社,2010.
[2] 易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,2010.
[3] 杨立波.智能温度控制系统研究[J].科技博览,2012年.
[4] 薛定宇.控制系统仿真与计算机辅助设计[M].北京:机械工业出版社,2013.