论文部分内容阅读
为提高约束多目标优化问题所求解集的分布性和收敛性,该文提出基于自适应ε截断策略的约束多目标优化算法。首先,自适应ε截断选择策略能够保留Parεto最优解和约束违反度及目标函数值均较优的不可行解,不仅提高了种群多样性,而且能够较好地兼顾多样性和收敛性;其次,为增强算法的局部开发能力,在变异操作和交叉操作之后进行指数变异;最后,改进的拥挤密度估计方式只选择一部分Parεto最优解和距离较近的个体参与计算,不仅更加准确地反映解集的分布性,而且降低了计算量。通过在标准测试问题(CTP系列)上与其他4种优秀算