论文部分内容阅读
考虑三维多项式微分系统x=-y(1+x)+ε(ax+F(x,y,z)),y=x(1+x)+ε(ay+c(x,y,z)),z=ε(cz+R(x,y,z))(F(0,0,z)=0,G(0,0,z)=0),利用一阶平均理论得到上面系统可以从x=-y(1+x),y=x(1+x),z=0的周期轨中分支出n2个极限环,最后用一个例子展示主要结果的简洁性和有效性.