论文部分内容阅读
滑动差分倒谱在自动语言辨识的研究中获得了广泛的应用.但是滑动差分倒谱并没有利用语音信号的静态倒谱信息,在方言辨识中的研究表明静态倒谱比差分倒谱含有更多的特征信息.为此,提出了滑动倒谱(SC)的概念,并与滑动差分倒谱特征矢量进行了对比研究.首先利用开发集的语音考察了滑动差分倒谱和滑动倒谱的控制参数在不同取值的情况下对识别性能的影响,利用爬山法确定了这2类特征矢量达到局部最优控制参数组合的路径,然后利用测试集的数据对优化后的2类特征矢量建立的模型进行了闭集辨识和开集辨识.2种情况下的测试结果都表明滑动倒