论文部分内容阅读
采用模式识别中的K最近邻法(KNN方法)对不满足于统计模型的数据阵中的缺省值进行预测,预测以样本值作为预测参照 由于原始数据阵没有训练集,故采用对原始数据进行最大似然主成分分析(MPCA),获得的结论与KNN方法处理后的数据的主成分分析结论相比较,结果表明,两套数据分析得出的主因子数、因子负载阵基本一致,而因子得分阵有细微的差别,预测较缺省值处理可获得更详尽的信息