论文部分内容阅读
通过构造一个适当的目标函数,将Hg氧化动力学模型的参数估计问题转化为一个多维数值优化问题;然后提出一种基于算术交叉和多样性变异的改进PSO算法来求解该优化问题。算法随机选择粒子与当前最优粒子进行算术交叉操作,将粒子逐步向极值点引导,提高算法的局部搜索能力。引入多样性变异算子以维持种群粒子的多样性。几个标准测试函数的实验结果表明算法具有较好的寻优性能。将算法应用于Hg氧化动力学模型参数估计中,获得了满意的结果。