多区间速度约束下的时序数据清洗方法

来源 :软件学报 | 被引量 : 0次 | 上传用户:mathsboy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为进一步优化推广大数据及人工智能技术,作为数据管理与分析的基础,数据质量问题日益成为相关领域的研究热点.通常情况下,数据采集及记录仪的物理故障或技术缺陷等会导致收集到的数据存在一定的错误,而异常错误会对后续的数据分析以及人工智能过程产生不可小视的影响,因此在数据应用之前,需要对数据进行相应的数据清洗修复.现存的平滑修复方法会导致大量原本正确的数据点过度修复为异常值,而基于约束的顺序依赖方法以及SCREEN方法等也因为约束条件较为单薄而无法对复杂的数据情况进行精确修复.基于最小修复原则,进一步提出了多区间速度约束下的时间序列数据修复方法,并采用动态规划方法来求解最优修复路径.具体来说,提出了多个速度区间来对时序数据进行约束,并根据多速度约束对各数据点形成一系列修复候选点,进而基于动态规划方法从中选取最优修复解.为验证上述方法的可行性和有效性,采用一个人工数据集、两个真实数据集以及一个带有真实错误的数据集在不同的异常率及数据量下对上述方法进行实验.由实验结果可知:相较于其他现存的修复方法,该方法在修复结果及时间开销方面均有着较好的表现.进一步,对多个数据集通过聚类及分类精确率的验证来表明数据质量问题对后续数据分析及人工智能的影响至关重要,本方法可以提升数据分析及人工智能结果的质量.
其他文献
由于具有低存储成本、高效检索、低标注成本等方面的优势,无监督的哈希技术已经引起了学术界越来越多的关注,并且已经广泛地应用到大规模数据库检索问题中.先前的无监督方法
建筑工程施工精细化管理作为一项新型的建筑施工管理理念,其重点表现在管理的信息化、数据化、规范化与系统化.在建筑工程施工中应用精细化管理对于整体施工以及管理质量的提