论文部分内容阅读
低密度奇偶校验(LDPC,Low-Density Parity-Check)码的剩余度置信度传播(RBP,Residual Belief-Propagation)和基于行的剩余度置信度传播(NWRBP,Node-Wise RBP)解码算法的性能提升非常有限且计算复杂度较高.提出改进的RBP(ERBP,Enhanced RBP)算法,在一个子迭代中,仅更新一个消息,然后设置被更新消息所在行的所有节点的剩余度值为0,使得ERBP解码算法在每个子迭代中使用不同行的消息进行计算,以加速迭代收敛.不同的LDPC码用于对所提出的算法进行性能仿真.仿真结果表明,与其他算法相比,ERBP算法降低了误帧率(FER,Frame Error Ratio),并加快了迭代收敛速度.
Low Residual Belief-Propagation (LDPC) and Low-Density Parity-Check (LDPC) and Residual Belief-Propagation (RBP) The performance improvement is very limited and the computational complexity is high.An improved RBP (ERBP, Enhanced RBP) algorithm is proposed, in which only one message is updated in a sub-iteration, and then the residual value of all nodes in the row where the updated message is set is 0 So that the ERBP decoding algorithm uses different rows of messages in each sub-iteration to accelerate iterative convergence.The different LDPC codes are used to simulate the performance of the proposed algorithm.The simulation results show that, compared with other algorithms, the ERBP algorithm Reduce the frame error ratio (FER), and speed up the iterative convergence rate.