论文部分内容阅读
特征选择是避免维度诅咒的一种数据预处理技术。在多变量时间序列预测中,为了同时找到与问题相关性最大的变量及其对应时延,提出一种基于多注意力的有监督特征选择方法。该方法利用带有注意力模块和学习模块的深度学习模型,将原始二维时间序列数据正交分割成两组一维数据,分别输入两个不同维度的注意力生成模块,得到特征维度和时间维度的注意权重。两个维度的注意力权值点积叠加作为全局注意力得分进行特征选择,作用于原始数据后输入随学习模块训练不断更新至收敛。实验结果表明,所提出的方法在特征数小于10时可达到全量数据训练效果,与现有