论文部分内容阅读
针对高维数据容易对噪声敏感及容易造成维数灾难问题,文中提出基于随机子空间的局部鉴别投影算法(RSLDP).利用随机子空间方法对高维的原始数据进行特征选择,在生成的低维特征子空间构造近邻图,降低噪声影响.RSLDP通过最大化局部类间加权散度和最小化局部类内加权散度,同时最小化样本的总体局部散度,改进局部最大间距鉴别嵌入算法,较好刻画样本与其类间类内近邻中心点的关系,有利于鉴别特征的提取.在CMU PIE和AR这2个人脸数据库上的实验表明文中算法的有效性.