集成优化核极限学习机的冠心病无创性诊断

来源 :计算机应用研究 | 被引量 : 4次 | 上传用户:jijibabajiji
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
冠心病的早期无创性诊断一直是医疗诊断领域的研究热点,为了提高冠心病诊断的准确率和诊断效率,提出了一种新颖的局部Fisher判别分析(LFDA)特征提取方法和集成核极限学习机(KELM)相结合的冠心病诊断模型(LFDA-EKELM)。首先使用LFDA方法剔除不相关特征和冗余特征,找出对分类结果贡献度较高的特征子集,产生不同的训练集以训练粒子群优化的KELM分类器PSO-KELM;基于旋转森林(RF)构建集成分类器,实现冠心病的智能诊断。实验结果表明,与基于ELM、SVM和BPNN方法相比,该方法有效提
其他文献
针对高动态环境下接收机的接收信号含有较大多普勒频率及其变化率,传统捕获方法无法对多普勒频率变化率进行有效补偿的问题进行了研究,提出了一种基于分数阶傅里叶变换的捕获
针对协同过滤算法中的新用户冷启动问题,提出了基于用户概要扩展的协同过滤算法(EUPCF)。算法采用一种新的加权朴素贝叶斯方法对新用户的概要进行局部扩展,然后使用扩展后的概要为新用户进行预测推荐,为预测项目提供更多近邻项目。新的加权朴素贝叶斯方法为每个条件属性独立计算后验概率,避免了传统方法中联合分布先验概率对数据稀疏度的敏感性问题,提高了扩展的准确度。Movie Lens数据集实验表明,新算法拥有