论文部分内容阅读
摘要文章指出了目前相对成熟的电凝聚处理废水能耗较大的缺点,综合论述了一种新兴的电化学处理废水的方法——高频脉冲的原理和应用。高频脉冲根据传统直流电凝聚的基本原理,以脉冲电流的方式弥补了传统电凝聚的局限性,可以有效地降低能耗,提高废水处理的效率。同时比较了高频脉冲与高压脉冲的异同,着重介绍了国内外脉冲电解废水的研究进展。
关键词高频脉冲 废水处理 电凝聚
文章编号1008-5807(2011)02-113-01
电化学方法治理污水,具有无需添加氧化剂、絮凝剂等化学药品,设备体积小,占地面积少,操作简便灵活等优点。但电化学方法一直存在着能耗大、成本高等缺点,从而大大限制了电化学处理废水在工业中的应用。
一、 高频脉冲的工作原理及优点
将电解槽与脉冲电源相连接构成电解体系,其进行的电解过程就是脉冲电解。电流从接通到断开的时间Ton为脉冲持续时间,也叫脉冲宽度,即电解的工作时间。电流从断开到接通的时间Toff为电解间歇时间或叫脉冲间歇。
输出脉冲可以是等间隔脉冲、疏密脉冲或脉动脉冲。脉冲电流的波形有方波、正弦半波、锯齿波、隔锯齿波等多种形式。脉冲具有3个独立的参数,即脉冲电压(或电流)幅值、脉冲宽度Ton和脉冲间歇Toff。为了达到较好的去污和节能效果,可对这3个参数进行调整。电解槽内的电流是离子在电场作用下流动而形成的。在供电时间内,离子浓度会迅速降低;而在断电间隙时间内,离子浓度又会得到迅速恢复和补充。所以在脉冲供电方式下电流密度要比直流供电下的电流密度有所提高,这就使电解去污效果增强。
脉冲电压通常在100~400V左右,相对直流供电的电压增大了不少。事实上,采用较高的电压,可以大大降低总电流强度和减少电解时间,从而提高电流效率,降低电耗、铁耗,电解效果会更好。由于整个平均电耗降低,电流又不大,因此变压器不易发热,设备运行安全可靠。
二、 国内外研究进展
(一)国内研究情况
国内对高频脉冲处理废水的研究还比较少,处于刚刚起步探索阶段,可以从理论研究和实际应用两个方面来阐述。
(二)理论研究
詹伯君对脉冲电解处理废水作了较为全面的研究。在结合分析脉冲电解废水处理电参数基础上,认为方波波形的脉冲电解电源应用于废水处理设备,节能效果明显、应用面广,可在适当场合推广。在结合植绒印花废水脉冲电解处理的基础上,分析了运行中出现的问题和解决办法。他认为在脉冲电压下激发出来的Fe2+具有极强的凝聚活性,极易与染料显色基团结合而脱色。
(三)实际应用
高频脉冲在实际应用方面,研究者们多采用交流脉冲。
熊方文、余蜀灵采用初步体现脉冲电解性能的JH—YR—B纺织印染废水净化设备处理毛纺印染废水,其脉冲电解平均电耗<0.4(kW·h)/t,与直流电解处理相比,电耗降低50%;铁电极消耗约20g/t,与直流电解法相比,铁耗降低60%。他们在其申请的中国专利——处理工业废水装置中也提到电解的电源供给可为低压直流式,也可高压脉冲式。
三、 国外研究进展
国外对(高频)脉冲电解处理废水的研究主要集中在俄罗斯和美国,其他国家也有少量的研究报道。这里以时间顺序对国外的研究情况作一简单的介绍。
早在1977年,美国的Long和Warren P在高压、脉冲电场的作用下,用电凝聚方法对含有妥儿油皂液的废液进行了处理。从工业装置所得数据表明其残渣大为减少,低于0.4%,而同时肥皂的回收率相比非脉冲方法增大了10%。
1984年,Khalturina、Pazenko、Aleksandrov认为流体的电凝聚处理可以在交流和直流交错的电流场中进行,其电极为可溶性电极。当胶体溶液以这种电凝聚的方式处理时,交流部分能防止油层在阳极的形成,但是功率消耗也相当可观了。为了减少功率消耗并使处理过程在稳定的条件下进行,他们对非对称电流处理含油溶液进行了实验。含油溶液包含不同浓度的石油产品,人们可以通过改变周期、逆电流持续时间、电流的脉冲幅度等来选择最佳非对称电流波形,同时加NaCl溶液增加处理液的导电性。
1996年,Labyak、Kostin研究了从电镀工厂的冲洗废水中提取金属镍所采用的脉冲电流参数的效果及技术特点,并取得了再生率、过程的电流效率、残留金属浓度和电耗等数据。从过程参数和提取镍的质量来看,可以得出脉冲电解相比常规静态电解有一系列的优势。该课题得出的最佳脉冲频率为1000Hz。
四、 结语
高频脉冲处理工业废水是一种崭新而有效的方法,它与电凝聚结合可以发扬电凝聚的优势,同时可以克服电凝聚的缺陷,使电耗、铁耗大大降低,工业前景非常诱人。
参考文献:
[1]徐新华,吴忠标编.环境保护与可持续发展.北京:化学工业出版社,2000:109~114.
[2]杨岳平,宋爽.电絮凝法处理毛纺染色废水.环境保护,2000,(8):19~20.
[3]詹伯君.植绒印花废水脉冲电解处理.污染防治技术,1997,10(3):169~172.
[4]向国朴编著.脉冲电镀的理论与应用.天津:天津科学技术出版社,1989:120~123.
[5]朱瑞安,郭振常编著.脉冲电镀.北京:电子工业出版社,1987:6~17,228~264.
[6]谢光炎.废水净化的电化学方法进展.给水排水,1998,24(1):64~68.
关键词高频脉冲 废水处理 电凝聚
文章编号1008-5807(2011)02-113-01
电化学方法治理污水,具有无需添加氧化剂、絮凝剂等化学药品,设备体积小,占地面积少,操作简便灵活等优点。但电化学方法一直存在着能耗大、成本高等缺点,从而大大限制了电化学处理废水在工业中的应用。
一、 高频脉冲的工作原理及优点
将电解槽与脉冲电源相连接构成电解体系,其进行的电解过程就是脉冲电解。电流从接通到断开的时间Ton为脉冲持续时间,也叫脉冲宽度,即电解的工作时间。电流从断开到接通的时间Toff为电解间歇时间或叫脉冲间歇。
输出脉冲可以是等间隔脉冲、疏密脉冲或脉动脉冲。脉冲电流的波形有方波、正弦半波、锯齿波、隔锯齿波等多种形式。脉冲具有3个独立的参数,即脉冲电压(或电流)幅值、脉冲宽度Ton和脉冲间歇Toff。为了达到较好的去污和节能效果,可对这3个参数进行调整。电解槽内的电流是离子在电场作用下流动而形成的。在供电时间内,离子浓度会迅速降低;而在断电间隙时间内,离子浓度又会得到迅速恢复和补充。所以在脉冲供电方式下电流密度要比直流供电下的电流密度有所提高,这就使电解去污效果增强。
脉冲电压通常在100~400V左右,相对直流供电的电压增大了不少。事实上,采用较高的电压,可以大大降低总电流强度和减少电解时间,从而提高电流效率,降低电耗、铁耗,电解效果会更好。由于整个平均电耗降低,电流又不大,因此变压器不易发热,设备运行安全可靠。
二、 国内外研究进展
(一)国内研究情况
国内对高频脉冲处理废水的研究还比较少,处于刚刚起步探索阶段,可以从理论研究和实际应用两个方面来阐述。
(二)理论研究
詹伯君对脉冲电解处理废水作了较为全面的研究。在结合分析脉冲电解废水处理电参数基础上,认为方波波形的脉冲电解电源应用于废水处理设备,节能效果明显、应用面广,可在适当场合推广。在结合植绒印花废水脉冲电解处理的基础上,分析了运行中出现的问题和解决办法。他认为在脉冲电压下激发出来的Fe2+具有极强的凝聚活性,极易与染料显色基团结合而脱色。
(三)实际应用
高频脉冲在实际应用方面,研究者们多采用交流脉冲。
熊方文、余蜀灵采用初步体现脉冲电解性能的JH—YR—B纺织印染废水净化设备处理毛纺印染废水,其脉冲电解平均电耗<0.4(kW·h)/t,与直流电解处理相比,电耗降低50%;铁电极消耗约20g/t,与直流电解法相比,铁耗降低60%。他们在其申请的中国专利——处理工业废水装置中也提到电解的电源供给可为低压直流式,也可高压脉冲式。
三、 国外研究进展
国外对(高频)脉冲电解处理废水的研究主要集中在俄罗斯和美国,其他国家也有少量的研究报道。这里以时间顺序对国外的研究情况作一简单的介绍。
早在1977年,美国的Long和Warren P在高压、脉冲电场的作用下,用电凝聚方法对含有妥儿油皂液的废液进行了处理。从工业装置所得数据表明其残渣大为减少,低于0.4%,而同时肥皂的回收率相比非脉冲方法增大了10%。
1984年,Khalturina、Pazenko、Aleksandrov认为流体的电凝聚处理可以在交流和直流交错的电流场中进行,其电极为可溶性电极。当胶体溶液以这种电凝聚的方式处理时,交流部分能防止油层在阳极的形成,但是功率消耗也相当可观了。为了减少功率消耗并使处理过程在稳定的条件下进行,他们对非对称电流处理含油溶液进行了实验。含油溶液包含不同浓度的石油产品,人们可以通过改变周期、逆电流持续时间、电流的脉冲幅度等来选择最佳非对称电流波形,同时加NaCl溶液增加处理液的导电性。
1996年,Labyak、Kostin研究了从电镀工厂的冲洗废水中提取金属镍所采用的脉冲电流参数的效果及技术特点,并取得了再生率、过程的电流效率、残留金属浓度和电耗等数据。从过程参数和提取镍的质量来看,可以得出脉冲电解相比常规静态电解有一系列的优势。该课题得出的最佳脉冲频率为1000Hz。
四、 结语
高频脉冲处理工业废水是一种崭新而有效的方法,它与电凝聚结合可以发扬电凝聚的优势,同时可以克服电凝聚的缺陷,使电耗、铁耗大大降低,工业前景非常诱人。
参考文献:
[1]徐新华,吴忠标编.环境保护与可持续发展.北京:化学工业出版社,2000:109~114.
[2]杨岳平,宋爽.电絮凝法处理毛纺染色废水.环境保护,2000,(8):19~20.
[3]詹伯君.植绒印花废水脉冲电解处理.污染防治技术,1997,10(3):169~172.
[4]向国朴编著.脉冲电镀的理论与应用.天津:天津科学技术出版社,1989:120~123.
[5]朱瑞安,郭振常编著.脉冲电镀.北京:电子工业出版社,1987:6~17,228~264.
[6]谢光炎.废水净化的电化学方法进展.给水排水,1998,24(1):64~68.