论文部分内容阅读
提出一种基于数据挖掘技术的电力负荷短期预测方法,将SVM方法引入到短期负荷预测研究领域。通过随机选取历史负荷数据来更新回归函数,这样可以充分保证计算速度和较高的预测精度。提出利用松原地区的历史负荷数据作为训练样本,通过与传统的BP神经网络预测模型进行对比,对预测结果进行比较,证明SVM预测方法在一定程度上能够保证短期负荷预测的精度。