论文部分内容阅读
为解决多元时间序列中的异常数据问题,在分析已有研究方法的基础上,提出一种基于分割聚类算法和长短期记忆网络结合的大数据异常检测方法。建立多元时间序列聚类模型,采用流水线模型和交替方向乘子法求解,得到子数据分段;使用长短期记忆网络重构各子序列,比较与原始序列的残差检测出异常数据点。以变压器监测数据为例进行异常检测,检测结果表明,该方法具有较高的检测精度。