论文部分内容阅读
该文结合掌纹图像的纹理特点,对原始韦伯局部描述子(WLD)中的差分激励和梯度方向进行改进,提出双Gabor方向韦伯局部描述子(DGWLD),以提高掌纹识别率。在构建新的差分激励图时,通过加入邻域像素点与中心像素点间灰度差分的方向信息,扩大异类掌纹间的差异。同时,采用双Gabor方向代替原始的梯度方向,减小平移和旋转对识别的影响。此外,为了更好地衡量特征间的相似度,使用交叉匹配算法,进一步提升识别率。在PolyU,MSpalmprint和CASIA掌纹库上进行实验,识别率均达到100%。实验的结果表明