论文部分内容阅读
基于光学影像受云雨等不良天气的影响,导致在地物分类时易造成数据信息缺失,而雷达影像作为主动式成像,能够较好地克服这一缺陷。笔者选取长春市净月开发区部分地块为研究区域,分别采用最小距离、最大似然和支持向量机3种分类方法,以Sentinel-1A雷达影像和Sentinel-2A多光谱影像为数据源,基于特征融合,提高地物分类精度。结果表明:特征融合后影像的地物分类精度较单一的光学影像有明显提高,且与最小距离和最大似然相比支持向量机分类精度最高。在无云层覆盖的情况下,融合后支持向量机分类精度达到97.94%