论文部分内容阅读
针对火灾图像纹理识别问题,提出了基于Gabor小波变换的ICA火灾图像纹理识别算法,并根据火灾图像纹理识别特点进行了优化;首先用不同尺度和方向的Gabor滤波器对待识别图像滤波,得到其特征图像,然后将特征图像转化成特征向量作为ICA的输入,得到基矢量子空间,再将测试图像经过Gabor滤波器的特征向量投影到ICA子空间中得到系数向量作为目标识别特征,最后用支持向量机进行识别;通过与Gabor滤波器法和ICA方法的对比实验,表明该算法可以在火灾纹理图像的识别率上比传统方法提高5%以上,为火灾图像识别提供