论文部分内容阅读
提出基于聚类RBF神经网络的人体行为识别方法。通过基于单模态高斯背景模型的背景差分法提取动作轮廓;采用基于中心距的傅里叶描述子,对图像轮廓线进行处理,降低了特征的维数;利用谱聚类算法提取行为序列的关键特征向量,采用改进的基于聚类的RBF神经网络进行行为识别。仿真实验表明,该方法能有效识别人体行为类别,应用效果满足实际要求。