论文部分内容阅读
摘要:近年来,我国对电能的需求越来越多,电厂建设也有了很大进展。而随着电力行业的快速发展,电厂普遍引入了新型热能动力锅炉,其既能够保证日常生产中的利用率,还能够有效缓解能源短缺问题,具备良好的节能环保性。因此本文深入探析了电厂热能动力锅炉燃料与燃烧方式,以期为电厂生产实现结构转型提供有力帮助。
关键词:电厂;热能动力锅炉;燃料;燃烧
doi:10.12159/j.issn.2095-6630.2019.22.3709
引言
近年來,工业锅炉在我国得到了广泛应用,也成为了我国电力产业在经营发展过程中重要的动力来源,能够有效提高电厂热力动能的应用效果。从当前工业锅炉的应用情况来看,其本身所存在能耗较高、污染等问题是影响工业锅炉发展和使用的重要因素,应当采取有效措施来加以改善。
1 研究电厂热能动力锅炉燃料及其燃烧特点的现实意义
与传统的电厂锅炉相比较而言,热能动力锅炉的出现,大大减少了锅炉燃料的使用量,保证热能得到更好的输出,电力能源的利用效果越来越好。通过研究电厂热能动力锅炉燃料及其燃烧特点,能够保证能源紧缺问题得到全面解决,真正达到节能减排的目标,对电厂的可持续绿色发展起到良好地推动作用。在一些规模比较大的电厂当中,由于采用普通的锅炉较多,在一定程度上浪费了大量的锅炉燃料,因此,大力发展并合理应用热能动力锅炉至关重要。锅炉是保障电厂稳定、有序经营的基础,但是, 由于电厂中的热能动力锅炉内部结构存在非常多的缺陷,使得锅炉燃料的浪费量逐年增加,锅炉的运行时间越来越短,降低了燃料的燃烧效果。通过研究电厂热能动力锅炉燃料,包括锅炉燃料的燃烧特点,能够帮助有关工作人员进一步了解各项锅炉燃料的性能,并对热能动力锅炉内部结构进行科学、高效的优化,从根本上延长锅炉的使用时间,降低电厂的燃料采购成本。
2 电厂热能动力锅炉燃烧方式
(1)气体燃料燃烧。锅炉气体燃烧仍旧是长焰燃烧,而由于其燃烧面积过大,不会与气体之间产生直接性接触,因此称为扩散性燃烧。在气体燃烧过程中,需在喷射火焰环节,发挥扩散优势与空气实现切实结合,从而保证燃烧的整体效果良好,此时火焰燃烧长度也会随之增长。受烧嘴限制影响,气体燃烧无法与空气产生接触,但是在喷射的时候,需要在其他部分燃烧时接触空气,以保障火焰燃烧具备显著效果。由于空气具有一定的助燃性, 火焰长度比较短,而其他部分燃烧与气体结合,就会进一步加速火焰喷射速度,因为速度不断加快,一般来说根本无法实时观测火焰具体形状与结构特性。(2)固体燃料燃烧。固体燃料燃烧主要存储在挥发性较差,且不具备挥发结构的固体燃料内。在实际燃烧时,结构表面主要产生CO2 和CO。在实际燃烧条件允许的情况下,CO2 通过氧化作用,转化成燃烧的CO 结构。主要燃烧条件为熔点比较低,在实际燃烧中,因为无法充分与氧气接触, 从而使得燃烧结构表面的可燃性明显降低,以此成为固体的燃烧形态。另外,固体燃烧在平时日常生活中的应用比较常见,例如蜡烛,在使用时,如果时间过长,那么就可以发现固体燃烧的特性。固体燃烧针对的是极易被燃烧分解的结构,所以燃烧时一般产生的烟雾都比较厚重,也可以被看作是结构燃烧不充分,造成固体燃烧。
3 锅炉燃料种类
电厂中的热能动力锅炉又经常被人们称为热换装置,其内部的能量来源比较广泛,其主要来源为燃料,常见的锅炉燃料主要有燃气、燃油与煤等,其中,煤在众多锅炉燃料中最为常见,其应用范围也比较广。通过在电厂热能动力锅炉内部投入一定量的煤,当燃料煤达到其自身的燃点之后,在氧气环境中,能够进行充分燃烧,释放一定的热量,热量传递给水,在满足锅炉运行压力的情况下,水以水蒸气的形式进行热量传递。除此之外,电厂中的热能动力锅炉常使用燃料还包括燃气与燃油,其中,燃油的热能动力锅炉使用的燃料比较多,主要使用柴油燃料。与燃油动力锅炉不同,燃气锅炉则主要使用液化石油气体与天然气等。研究表明,大部分电厂受市场经济环境的重大影响,热能动力锅炉燃料主要采用煤炭,而煤炭内部包含一定量的氧、氢、碳元素, 碳元素占据50% 左右,而氧、氢、硫等元素能够更好地满足锅炉燃烧要求。为了进一步提升煤炭燃料的燃烧质量,操作人员需要定期进行通风,为锅炉燃料提供更加充足、高质量的氧气,保证热能动力锅炉内部燃料燃烧状态符合相关规定。
4 电厂热能动力锅炉燃烧控制措施
其一,燃料控制。严格按照锅炉蒸汽负荷要求,最关键的是控制燃烧量,这主要是由于锅炉给风对送风、引风控制有着直接影响。而燃料控制则是为了消除内部干扰,改善系统效率,因为各部分之间密切相关,因此彼此间的相互影响也需要加以重视, 这就需要积极关注燃料质量与供给装置机械数量。其二,送风量控制。为了确保燃烧的经济性,也为了应对燃料量变化,适当改变送风量,送风量的主要任务是相互协调送风量与燃料量,以促使锅炉燃烧效率处于最高状态,从而保证锅炉经济效益与用户需求相符。但是,在引风量控制系统中,要求炉膛压力控制在既定标准内,因此,引风量与送风量间应保持平衡,而且炉膛压力也与锅炉燃烧的安全性、经济性密切相关,压力过大喷火会引发爆炸,压力小冷风进入炉膛会直接影响燃烧。所以,可以将送风量当作前馈信号,以此改善系统调节能力。
5 燃料燃烧特点分析
第一点,火室燃烧,由于锅炉燃料在悬浮状态下进行燃烧, 有关操作人员利用先进的工艺将锅炉燃料加工成粉末或者气体, 并将燃料与空气共同输入到锅炉内部,在输入燃料的过程当中, 要保障锅炉内部的燃烧温度达到燃料的燃点,保证燃料始终处于悬浮状态。因为锅炉燃料能够和空气进行全面接触,采用火势燃烧法进行燃烧,能够保证燃料在短时间内进入燃烧状态,但是, 由于空气与燃料不能够同时送入,很容易出现锅炉燃料浪费现象。第二点,旋风燃烧特点,操作人员通过准备一定量的可燃物,并以切线角度将燃料送入锅炉当中,短时间之内,锅炉内部产生旋转速率特别高的气流,使得燃料形成强度特别大的螺旋状态。采用旋风燃烧方式,能够减少燃料的剩余量,但是,采用该方法也有缺陷,如操作人员需要定期进行送风,包括煤炭燃烧过程当中, 很可能会造成部分物理状态能量的浪费。第三点,分层次燃烧特点,在热能动力锅炉燃烧时,将一些固体可燃物均匀的排布在锅炉炉排表面,固体可燃物能够进行分层燃烧。采用这种燃烧方式, 能够将燃烧中的各个层次能量全部释放,燃料的燃烧进程特别稳定。缺点也特别明显,操作人员需要准确计算通风时间,一旦通风不及时,很容易产生大量的有害气体。
结束语
综上,通过详细介绍电厂热能动力锅炉运行特点、锅炉燃料种类、燃料特点等,能够保证电厂热能动力锅炉内部结构更加稳定,有效减少锅炉燃料的浪费。对于相关操作人员而言,在实际操作的过程当中,要认真遵守有关规则,投放一定量的锅炉燃料, 真正实现燃料资源的高效利用。
参考文献
[1] 李阳冬. 电厂热能动力锅炉燃料及燃烧分析[J]. 江西建材,2014(20):200~201.
[2] 康付帅. 电厂热能动力锅炉燃料和燃烧探析[J]. 科技创新与应用,2017(15):155~156.
[3] 隋本友. 电厂热能动力锅炉燃料及燃烧[J]. 环球市场信息导报,2016(48):127.
关键词:电厂;热能动力锅炉;燃料;燃烧
doi:10.12159/j.issn.2095-6630.2019.22.3709
引言
近年來,工业锅炉在我国得到了广泛应用,也成为了我国电力产业在经营发展过程中重要的动力来源,能够有效提高电厂热力动能的应用效果。从当前工业锅炉的应用情况来看,其本身所存在能耗较高、污染等问题是影响工业锅炉发展和使用的重要因素,应当采取有效措施来加以改善。
1 研究电厂热能动力锅炉燃料及其燃烧特点的现实意义
与传统的电厂锅炉相比较而言,热能动力锅炉的出现,大大减少了锅炉燃料的使用量,保证热能得到更好的输出,电力能源的利用效果越来越好。通过研究电厂热能动力锅炉燃料及其燃烧特点,能够保证能源紧缺问题得到全面解决,真正达到节能减排的目标,对电厂的可持续绿色发展起到良好地推动作用。在一些规模比较大的电厂当中,由于采用普通的锅炉较多,在一定程度上浪费了大量的锅炉燃料,因此,大力发展并合理应用热能动力锅炉至关重要。锅炉是保障电厂稳定、有序经营的基础,但是, 由于电厂中的热能动力锅炉内部结构存在非常多的缺陷,使得锅炉燃料的浪费量逐年增加,锅炉的运行时间越来越短,降低了燃料的燃烧效果。通过研究电厂热能动力锅炉燃料,包括锅炉燃料的燃烧特点,能够帮助有关工作人员进一步了解各项锅炉燃料的性能,并对热能动力锅炉内部结构进行科学、高效的优化,从根本上延长锅炉的使用时间,降低电厂的燃料采购成本。
2 电厂热能动力锅炉燃烧方式
(1)气体燃料燃烧。锅炉气体燃烧仍旧是长焰燃烧,而由于其燃烧面积过大,不会与气体之间产生直接性接触,因此称为扩散性燃烧。在气体燃烧过程中,需在喷射火焰环节,发挥扩散优势与空气实现切实结合,从而保证燃烧的整体效果良好,此时火焰燃烧长度也会随之增长。受烧嘴限制影响,气体燃烧无法与空气产生接触,但是在喷射的时候,需要在其他部分燃烧时接触空气,以保障火焰燃烧具备显著效果。由于空气具有一定的助燃性, 火焰长度比较短,而其他部分燃烧与气体结合,就会进一步加速火焰喷射速度,因为速度不断加快,一般来说根本无法实时观测火焰具体形状与结构特性。(2)固体燃料燃烧。固体燃料燃烧主要存储在挥发性较差,且不具备挥发结构的固体燃料内。在实际燃烧时,结构表面主要产生CO2 和CO。在实际燃烧条件允许的情况下,CO2 通过氧化作用,转化成燃烧的CO 结构。主要燃烧条件为熔点比较低,在实际燃烧中,因为无法充分与氧气接触, 从而使得燃烧结构表面的可燃性明显降低,以此成为固体的燃烧形态。另外,固体燃烧在平时日常生活中的应用比较常见,例如蜡烛,在使用时,如果时间过长,那么就可以发现固体燃烧的特性。固体燃烧针对的是极易被燃烧分解的结构,所以燃烧时一般产生的烟雾都比较厚重,也可以被看作是结构燃烧不充分,造成固体燃烧。
3 锅炉燃料种类
电厂中的热能动力锅炉又经常被人们称为热换装置,其内部的能量来源比较广泛,其主要来源为燃料,常见的锅炉燃料主要有燃气、燃油与煤等,其中,煤在众多锅炉燃料中最为常见,其应用范围也比较广。通过在电厂热能动力锅炉内部投入一定量的煤,当燃料煤达到其自身的燃点之后,在氧气环境中,能够进行充分燃烧,释放一定的热量,热量传递给水,在满足锅炉运行压力的情况下,水以水蒸气的形式进行热量传递。除此之外,电厂中的热能动力锅炉常使用燃料还包括燃气与燃油,其中,燃油的热能动力锅炉使用的燃料比较多,主要使用柴油燃料。与燃油动力锅炉不同,燃气锅炉则主要使用液化石油气体与天然气等。研究表明,大部分电厂受市场经济环境的重大影响,热能动力锅炉燃料主要采用煤炭,而煤炭内部包含一定量的氧、氢、碳元素, 碳元素占据50% 左右,而氧、氢、硫等元素能够更好地满足锅炉燃烧要求。为了进一步提升煤炭燃料的燃烧质量,操作人员需要定期进行通风,为锅炉燃料提供更加充足、高质量的氧气,保证热能动力锅炉内部燃料燃烧状态符合相关规定。
4 电厂热能动力锅炉燃烧控制措施
其一,燃料控制。严格按照锅炉蒸汽负荷要求,最关键的是控制燃烧量,这主要是由于锅炉给风对送风、引风控制有着直接影响。而燃料控制则是为了消除内部干扰,改善系统效率,因为各部分之间密切相关,因此彼此间的相互影响也需要加以重视, 这就需要积极关注燃料质量与供给装置机械数量。其二,送风量控制。为了确保燃烧的经济性,也为了应对燃料量变化,适当改变送风量,送风量的主要任务是相互协调送风量与燃料量,以促使锅炉燃烧效率处于最高状态,从而保证锅炉经济效益与用户需求相符。但是,在引风量控制系统中,要求炉膛压力控制在既定标准内,因此,引风量与送风量间应保持平衡,而且炉膛压力也与锅炉燃烧的安全性、经济性密切相关,压力过大喷火会引发爆炸,压力小冷风进入炉膛会直接影响燃烧。所以,可以将送风量当作前馈信号,以此改善系统调节能力。
5 燃料燃烧特点分析
第一点,火室燃烧,由于锅炉燃料在悬浮状态下进行燃烧, 有关操作人员利用先进的工艺将锅炉燃料加工成粉末或者气体, 并将燃料与空气共同输入到锅炉内部,在输入燃料的过程当中, 要保障锅炉内部的燃烧温度达到燃料的燃点,保证燃料始终处于悬浮状态。因为锅炉燃料能够和空气进行全面接触,采用火势燃烧法进行燃烧,能够保证燃料在短时间内进入燃烧状态,但是, 由于空气与燃料不能够同时送入,很容易出现锅炉燃料浪费现象。第二点,旋风燃烧特点,操作人员通过准备一定量的可燃物,并以切线角度将燃料送入锅炉当中,短时间之内,锅炉内部产生旋转速率特别高的气流,使得燃料形成强度特别大的螺旋状态。采用旋风燃烧方式,能够减少燃料的剩余量,但是,采用该方法也有缺陷,如操作人员需要定期进行送风,包括煤炭燃烧过程当中, 很可能会造成部分物理状态能量的浪费。第三点,分层次燃烧特点,在热能动力锅炉燃烧时,将一些固体可燃物均匀的排布在锅炉炉排表面,固体可燃物能够进行分层燃烧。采用这种燃烧方式, 能够将燃烧中的各个层次能量全部释放,燃料的燃烧进程特别稳定。缺点也特别明显,操作人员需要准确计算通风时间,一旦通风不及时,很容易产生大量的有害气体。
结束语
综上,通过详细介绍电厂热能动力锅炉运行特点、锅炉燃料种类、燃料特点等,能够保证电厂热能动力锅炉内部结构更加稳定,有效减少锅炉燃料的浪费。对于相关操作人员而言,在实际操作的过程当中,要认真遵守有关规则,投放一定量的锅炉燃料, 真正实现燃料资源的高效利用。
参考文献
[1] 李阳冬. 电厂热能动力锅炉燃料及燃烧分析[J]. 江西建材,2014(20):200~201.
[2] 康付帅. 电厂热能动力锅炉燃料和燃烧探析[J]. 科技创新与应用,2017(15):155~156.
[3] 隋本友. 电厂热能动力锅炉燃料及燃烧[J]. 环球市场信息导报,2016(48):127.