论文部分内容阅读
Steam-reforming is an effective approach for upgrading methane and hydrocarbon of coke-oven gas into CO and H2, but the kinetic behavior needs more study. We investigated the conversion of methane in coke-oven gas by steam reforming process in an electric tubular flow at 14 kPa with temperature varying from 500 °C to 950 °C, and developed a kenetic model for , ignoring the effects of adsorption and diffusion. The optimal dynamic conditions for methane conversion 14 kPa are as follows:the ratio of the amount of water to the amount of methane is from 1.1 to 1.3;the reaction temperature is from 1 223 K to 1 273 K. The methane conversion rate is larger than 95% when the ratio of the amount of water to the amount of methane is 1.2 at a temperature above 1 223 K with the residence time up to 0.75 s.
Steam-reforming is an effective approach for upgrading methane and hydrocarbon of coke-oven gas into CO and H2, but the kinetic behavior needs more study. We investigated the conversion of methane in coke-oven gas by steam reforming process in an electric tubular flow at 14 kPa with temperature varying from 500 ° C to 950 ° C, and developed a kenetic model for, ignoring the effects of adsorption and diffusion. The optimal dynamic conditions for methane conversion 14 kPa are as follows: the ratio of the amount of water The amount of methane is from 1.1 to 1.3; the reaction temperature is from 1 223 K to 1 273 K. The methane conversion rate is larger than 95% when the ratio of the amount of water to the amount of methane is 1.2 at a temperature above 1 223 K with the residence time up to 0.75 s.