论文部分内容阅读
基于单一边缘节点计算、存储资源的有限性及大数据场景对高效计算服务的需求,本文提出了一种基于深度强化学习的云边协同计算迁移机制.具体地,基于计算资源、带宽和迁移决策的综合性考量,构建了一个最小化所有用户任务执行延迟与能耗权重和的优化问题.基于该优化问题提出了一个异步云边协同的深度强化学习算法,该算法充分利用了云边双方的计算能力,可有效满足大数据场景对高效计算服务的需求;同时,面向边缘云中边缘节点所处环境的多样及动态变化性,该算法能自适应地调整迁移策略以实现系统总成本的最小化.最后,大量的仿真结果表明本文所提