论文部分内容阅读
针对具有积分边值条件的分数阶微分方程正解的问题,利用算子不动点理论,结合迭代逼近的思想,给出一类非线性项带参数且具有积分边值条件的分数阶微分方程正解的存在唯一性,并通过构造迭代序列来逼近方程的正解;利用一类特殊算子方程正解的性质,结合所讨论方程格林函数的性质,给出方程正解依赖于参数的一些性质。结果表明,利用算子不动点理论讨论非线性项带参数的分数阶微分方程边值问题正解的存在唯一性是可行的。