论文部分内容阅读
本文提出了一种从观察序列的广义自回归(GAR)模型参数提取待识别信号的伪瞬时中心频率和伪瞬时3dB带宽特征,并利用神经网络分类器的数字调制识别新方法。这种方法充分利用了GAR模型良好的抗噪声能力和神经网络优异的模式分类能力,能有效地改善低SNR条件下的调制识别性能。计算机模拟结果证实了该方法具有很高的识别率和良好的稳健性。