论文部分内容阅读
为提高模拟电路故障诊断效率,克服依据单一信息进行诊断的不足,提出了一种支持向量机信息融合的模拟电路故障诊断方法;首先构建了基于支持向量机的信息融合诊断模型,其次给出了基于小波包变换的能量特征提取和基于主元分析特征压缩方法,分析了支持向量机一对一多分类方法,最后通过模拟电路的仿真实验,与未进行信息融合,以及BP、RBF和PNN等神经网络对比,结果显示,基于支持向量机信息融合方法的诊断精度最高,约为97.3%。