论文部分内容阅读
姿态变化造成同一对象或同类对象的视觉信息差异巨大,成为计算机视觉中对象识别的一大挑战因素.属性表示重在刻画较高的抽象语义特性,具有应对包括姿态变化的复杂环境变化的鲁棒性,但也给属性学习自身带来了较大难度.如何降低属性学习的难度同时提高属性表示的判别力,成为基于属性表示的识别模型的关键,尤其面临对判别属性要求较高的细粒度识别任务.显式地对姿态建模,在不同姿态下学习能够最大化类别间隔的视觉判别属性,最终作为中间表示用于类别识别.最后,在细粒度公开数据集CUB上验证了所提出的基于姿态的判别属性在细粒度识别