论文部分内容阅读
针对复杂化工过程,提出了一种结合小波分析与概率神经网络(PNN)的故障诊断方法(HWPNN方法),即利用Haar小波分析对过程原始数据进行消噪处理,然后将重构的逼近系数作为输入样本送入概率神经网络完成故障诊断。将HWPNN方法应用于TE过程(一个化工生产过程,由Tennessee Eastman公司控制小组提出)的15种故障进行实验,并与将原始数据直接送入概率神经网络作故障诊断的PNN方法进行了比较,实验结果表明HWPNN方法的故障诊断的准确率明显高于PNN方法。HWPNN方法的诊断准确率达到了100%,