论文部分内容阅读
客户流失分析与预测是客户关系管理的重要内容.针对客户流失问题,建立了支持向量机预测模型.针对实际客户流失数据中正负样本数量不平衡而且数据量大的特点,提出带有不同类权重参数的支持向量机算法CW-SVM,通过调整类权重参数改变分类面位置,提高算法分类准确性;将标准支持向量机训练问题转化为运算效率更高的核向量机问题,提出处理不平衡海量数据集的CWC-SVM算法.通过实际银行信贷客户数据集测试,该算法与传统预测算法比较,更适合解决大数据集和不平衡数据,取得较好的客户流失预测效果.