流固耦合方程组间断Galerkin方法的探索

来源 :应用数学与计算数学学报 | 被引量 : 0次 | 上传用户:xuyi50488
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
主要通过对复杂接触表面问题以及流固耦合方程组中边界间断问题的分析,探讨其间断Galerkin方法的有限元计算.保留有限元线性离散的计算优势,有效地弱化了边界间断对流场中速度的影响,得到流固耦合方程组的空间半离散有限元格式,为数值计算提供了有力的理论支撑.
其他文献
针对一类非线性传输问题提出了有限元与边界元的耦合方法并设计了基于耦合法的区域分解算法.该算法避免了求解边界积分方程,从而计算量大大减少.算法的收敛性分析和数值算例验证
证明了理想非等熵磁气体动力学守恒律方程组当磁场作用消失时,其Riemann问题的解收敛于相应的绝热流可压缩欧拉方程组的解,即气体动力学欧拉方程组Riemann解关于磁场强度的稳
根据质量守恒定律、动量守恒定律以及能量守恒定律推导了变截面管道等熵磁气体动力学守恒律方程组.利用特征分析法给出了基本波曲线表达式.引入全局熵条件唯一确定驻波解,并
针对二维系数不连续Helmholtz方程,提出和研究了高阶紧致差分格式,在波数跳跃位置引入局部网格加密技巧进行网格加密.数值实验验证,该高阶紧致差分格式用于求解二维系数不连
主要研究带有Riemann-Liouville型分数阶导数,阶数介于(n-1,n)之间的非线性分数阶微分方程解的稳定性.首先将分数阶微分方程转换为等价的Volterra积分方程,再利用Schauder不