论文部分内容阅读
针对贝叶斯(Naive Bayes,NB)分类器的集成学习方法,研究如何提高分类器集成中各成员分类器之间的多样性,同时提高分类器系统准确率。实现方法是把训练集的所有属性特征划分特征子集,并处理所划分的属性特征子集,最后为每个成员分类器构造出不同的完整特征属性训练集。研究结果表明采用的NB集成方法(Ensemble ofNaive Bayes,ENB)提高了分类性能,把ENB机器学习方法应用到自动图像标注中也获得了很好的效果。