论文部分内容阅读
针对高校图书馆无法实现精准读者推荐和服务的问题,在充分分析读者在图书馆的行为数据基础上,设计了一种基于多视角聚类的高校图书馆用户画像框架。考虑到经典k-means算法在多视角聚类中存在容易陷入局部最优的缺陷,提出了一种基于马氏距离的多视角二分k-means算法,该算法引入马氏距离有效地解决了欧式距离在多视角聚类中受属性量纲的影响。实验证明:相比经典k-means算法和二分k-means算法,改进后的算法在用户画像过程中全局最优、鲁棒性好、效率高;利用该框架得到的用户画像能够帮助高校图书馆挖掘读者需求、提高