论文部分内容阅读
设矩阵X=(xij)∈R^n×n,如果xij=xn+1-i,n+1-j(i,j=1,2,…,n),则称X是中心对称矩阵.该文构造了一种迭代法求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C的中心对称解组(其中[X1,X2,…,Xl]是实矩阵组).当矩阵方程相容时,对任意初始的中心对称矩阵组[X1^(0),X2(0).…,Xl^(0)],在没有舍入误差的情况下,经过有限步迭代,得到它的一个中心对称解组,并且,通过选择一种特殊的中心对称矩阵组,得到它的最小范数中心对称解组.另外,给定中心对