论文部分内容阅读
针对隧道裂缝人工识别低效、检修不便以及隧道环境复杂多变、检测易受噪声干扰等问题,文中提出一种基于深度学习的裂缝检测算法;通过神经网络对原始图像进行非裂缝区域过滤,减少无关背景信息的干扰,同时在分割算法基础上通过多维分类器将误识别的裂缝区域剔除;实验结果表明,密集连接卷积网络(DenseNet)在裂缝分类中最高可达99.95%的准确率,有效提升了隧道裂缝自动检测精度。