论文部分内容阅读
目的采用传统的2维特征提取方法,很难从视频中准确地捕获出人体的关节点位置,限制了识别率的上限。采用深度信息的3维特征提取能提升识别率,但高维空间运算复杂度高,很难实现实时识别,受应用场景限制。为克服上述难点,提出一种基于3维特权学习的人体动作识别方法,将3维信息作为特权信息引入到传统的2维动作识别过程中,用来识别人体动作。方法以运动边界直方图密集光流特征、Mosift(Motion SIFT)特征和多种特征结合的混合特征作为2维基本特征。从Kinect设备获得的深度信息中评估出人体的关节点信息,并用