论文部分内容阅读
提出一种基于混合粒子滤波的运动火焰跟踪算法。针对通用粒子滤波算法计算量大的问题,提出了混合粒子滤波,将Mean Shift算法嵌入到粒子滤波中,并用自适应运动模型和目标模型自动更新的策略改善算法性能。基于混合粒子滤波提出了火焰识别和火焰跟踪相结合的运动火焰自动跟踪算法,先火焰识别,再火焰跟踪,且跟踪时,如果估计目标与模型的相似度小于阈值则切换到火焰识别阶段。识别与跟踪的相互切换保证了跟踪结果的正确性。实验结果表明混合粒子滤波具有很好的跟踪效果,与粒子滤波和Mean Shift算法相比,提高了跟踪精度