论文部分内容阅读
为了有效提高语音情感识别的性能,需要对嵌入在高维声学特征空间的非线性流形上的语音特征数据作非线性降维处理。监督局部线性嵌入(SLLE)是一种典型的用于非线性降维的监督流形学习算法。该文针对SLLE存在的缺陷,提出一种能够增强低维嵌入数据的判别力,具备最优泛化能力的改进SLLE算法。利用该算法对包含韵律和音质特征的48维语音情感特征数据进行非线性降维,提取低维嵌入判别特征用于生气、高兴、悲伤和中性4类情感的识别。在自然情感语音数据库的实验结果表明,该算法仅利用较少的9维嵌入特征就取得了90.78%的最