基于集员滤波的二阶Volterra自适应归一化最小平均P范数算法

来源 :计算机应用 | 被引量 : 10次 | 上传用户:yuxk781224
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对Volterra非线性滤波算法计算复杂度呈幂级数增加的问题,提出了一种α稳定分布噪声下的基于集员滤波的二阶Volterra自适应滤波新算法。由于集员滤波的目标函数考虑了所有输入和期望输出的信号对,通过误差幅值的p次方的门限判决,更新Volterra滤波器的权向量,不仅有效降低了算法复杂度,而且提高了自适应算法对输入信号相关性的鲁棒性;并推导给出了权向量的更新公式。仿真结果表明,该算法计算复杂度低、收敛速度快,对噪声及输入信号相关性有较强的鲁棒性。
其他文献
针对传统关联规则算法产生的规则关联性弱、种类少的缺点,结合Spearman秩相关系数,提出了一种多类关联算法。该算法在传统算法产生的强规则基础上,利用Spearman秩相关方法计算出规则中产品间的同步异步等相关性。将其作为兴趣度阈值,算法可同时产生同步正规则、异步正规则、同步负规则和异步负规则四类关联规则,且规则间联系紧密。实验结果表明了算法的有效性和优越性。