论文部分内容阅读
机器学习的发展依赖大量可用的数据。但是,在现实中数据分布在大量不同的企业和组织中,并且受到很多法律和现实情况的限制,将这些分散在各处的数据合并成一个拥有大量数据的数据集并不现实。为了解决机器学习领域的这一挑战,引入了一个新的算法和框架,称之为联邦迁移学习(Federated Transfer Learning,FTL)。FTL在允许不损害用户隐私的情况下共享知识,并且也允许跨域传输互补知识,因此可以利用源域中丰富的标签,来为目标域建立一个灵活而有效的模型。在联邦迁移学习中,使用了同态加密算法来保证在