论文部分内容阅读
针对人脸表情类内差异大、类间相似度高导致识别率低的问题,提出了一种基于角度距离损失与小尺度核网络的表情识别方法。网络基于3×3卷积核,在网络中加入融合空间金字塔注意力的点积残差块,引入Dropblock正则化,并提出了低层特征掩膜化。该模型低层特征具备高层特征的语义信息,而且参数量较少,结构简单有效。训练时,使用提出的基于角度距离损失函数监督神经网络学习,提高了网络的类间特征分离和类内特征聚类的特征判别能力。实验结果表明,该方法在CK+和FER2013数据集上识别准确率分别达到了97.88%和72.