论文部分内容阅读
针对支持向量机在考生行为自动识别中的参数优化问题,提出了一种人工蜂群算法优化支持向量机的考生行为自动识别方法.首先将支持向量机参数编码成为人工蜂群的蜜源,以考生行为识别正确率作为搜索目标,然后通过人工蜂群之间的信息交流和共享找到支持向量机的最优参数,并建立最优考生行为识别模型,最后采用仿真实验测试已建立考生行为识别模型的性能.实验结果表明,本文方法不仅提高了考生行为识别的正确率,而且加快了考生行为识别的速度,可以很好的满足考生行为自动识别实时性要求.