基于差异化信息融合的语义信息检索模型

来源 :微电子学与计算机 | 被引量 : 0次 | 上传用户:vvlioo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究语义信息检索方法,提高检索的效率.差异化信息由于特征差异过大,在检索过程中存在较大排异现象,传统的语义信息检索模型针对大差异信息检索过程中,以多轮次检测为主,效率很低.为此,提出一种基于决策树算法的语义信息检索方法.根据多层次解析融合相关理论,计算窗口函数,并且根据窗口函数进行不同层次数据的融合,得到差异信息融合结果.根据上述结果,建立决策树,实现语义信息的检索.实验结果表明,利用改进算法进行语义信息检索,能够提高检索的效率.
其他文献
针对传统的DBSCAN算法只能依靠经验来设置阈值(minPts,Eps)和无法对多密度数据集进行有效聚类的不足,提出了一种可适用于所有密度分布特征的数据集的基于高斯分布的自适应DBSCA